Seedlings are vulnerable to many kinds of fatal abiotic and biotic agents, and examining the causes of seedling dynamics can help understand mechanisms of species coexistence. To disentangle the relative importance of neighborhood densities, habitat factors and phylogenetic relatedness on focal seedling survival, we monitored the survival of 5306 seedlings of 104 species >15 months.
We address the following questions: (i) How do neighborhood densities, habitat variables and phylogenetic relatedness affect seedling survival? What is the relative importance of conspecific densities, habitat variables and phylogenetic relatedness to seedling survival? (ii) Does the importance of the neighborhood densities, habitat variables and phylogenetic relatedness vary among growth forms, leaf habits or dispersal modes? Specially, does the conspecific negative density dependence inhibit tree and deciduous seedlings more compared with shrub and evergreen species? Does density dependence affect the wind and animal-dispersed species equally?
Methods We established 135 census stations to monitor seedling dynamics in a 25-ha subtropical forest plot in central China. Conspecific and heterospecific seedling density in the 1-m2 seedling plot and adult basal area within a 20-m radius provided neighborhood density variables. Mean elevation, convexity and aspect of every 5- × 5-m grid with seedling plots were used to quantify habitat characteristics. We calculated the relative average phylodiversity between focal seedling and heterospecific neighbors to quantify the species relatedness in the neighborhood. Eight candidate generalized linear mixed models with binominal error distribution were used to compare the relative importance of these variables to seedling survival. Akaike’s information criteria were used to identify the most parsimonious models.
Important Findings
At the community level, both the neighborhood densities and phylogenetic relatedness were important to seedling survival. We found negative effects of increasing conspecific seedlings, which suggested the existence of species-specific density-dependent mortality. Phylodiversity of heterospecific neighbors was negatively related to survival of focal seedlings, indicating similar habitat preference shared among phylogenetically closely related species may drive seedling survival. The relative importance of neighborhood densities, habitat variables and phylogenetic relatedness varied among ecological guilds. Conspecific densities had significant negative effect for deciduous and wind-dispersed species, and marginally significant for tree seedlings >10 cm tall and animal-dispersed species. Habitat variables had limited effects on seedling survival, and only elevation was related to the survival
of evergreen species in the best-fit model. We conclude that both negative density-dependent mortality and habitat preference reflected by the phylogenetic relatedness shape the species coexistence at seedling stage in this forest.