Understanding the assembly and turnover of microbial communities is crucial for gaining insights into the diversity and functioning of lake ecosystems, a fundamental and central issue in microbial ecology. The ecosystem of Taihu Lake has been significantly jeopardized due to urbanization and industrialization. In this study, we examined the diversity, assembly, and turnover of bacterial and fungal communities in Taihu Lake sediment. The results revealed strong bacterial stochasticity and fast fungal turnover in the sediment. Significant heterogeneity was observed among all sediment samples in terms of environmental factors, especially ORP, TOC, and TN, as well as microbial community composition and alpha diversity. For instance, the fungal richness index exhibited an approximate 3-fold variation. Among the environmental factors, TOC, TN, and pH had a more pronounced influence on the bacterial community composition compared to the fungal community composition. Interestingly, species replacement played a dominant role in microbial beta diversity, with fungi exhibiting a stronger pattern. In contrast, stochastic processes governed the community assembly of both bacteria and fungi, but were more pronounced for bacteria (R2 = 0.7 vs. 0.5). These findings deepen the understanding of microbial assembly and turnover in sediments under environmental stress and provide essential insights for maintaining the multifunctionality of lake ecosystems.
Copyright 2002 - 2023 Wuhan Botanical Garden,Chinese Academy Of
Sciences
Email: wbgoffice@wbgcas.cn ICP: 05004779-1