The infl uence of alkali on astaxanthin and the optimal working wave length for measurement of astaxanthin from Haematococcus crude extract were investigated, and a spectrophotometric method for precise quantifi cation of the astaxanthin based on the method of Boussiba et al. was established. According to Boussiba’s method, alkali treatment destroys chlorophyll. However, we found that: 1) carotenoid content declined for about 25% in Haematococcus fresh cysts and up to 30% in dry powder of Haematococcus broken cysts after alkali treatment; and 2) dimethyl sulfoxide (DMSO)-extracted chlorophyll of green Haematococcus bares little absorption at 520–550 nm. Interestingly, a good linear relationship existed between absorbance at 530 nm and astaxanthin content, while an unknown interference at 540–550 nm was detected in our study. Therefore, with 530 nm as working wavelength, the alkali treatment to destroy chlorophyll was not necessary and the infl uence of chlorophyll, other carotenoids, and the unknown interference could be avoided. The astaxanthin contents of two samples were measured at 492 nm and 530 nm; the measured values at 530 nm were 2.617 g/100 g and 1.811 g/100 g. When compared with the measured values at 492 nm, the measured values at 530 nm decreased by 6.93% and 11.96%, respectively. The measured values at 530 nm are closer to the true astaxanthin contents in the samples. The data show that 530 nm is the most suitable wave length for spectrophotometric determination to the astaxanthin in Haematococcus crude extract.