Leaf litter quality has been acknowledged as a crucial determinant affecting litter decomposition on broad spatial scales. However, the extent of the contribution of soil fauna to litter decomposability remains largely uncertain. Nor are the effects of leaf size and defensive traits on soil fauna regulating litter decomposability clear when compared to economics traits. Here, we performed a meta-analysis of 81 published articles on litterbag experiments to quantitatively evaluate the response ratio of soil fauna to litter decomposition at the global level. Our results revealed that soil fauna significantly affected litter mass loss across diverse climates, ecosystems, soil types, litter species, and decomposition stages. We observed significantly positive correlations between the response ratio of soil fauna and leaf length, width, and area, whereas the concentrations of cellulose, hemicellulose, total phenols, and condensed tannins were negatively correlated. Regarding economic traits, the response ratio of soil fauna showed no relationship with carbon and nitrogen concentrations but exhibited positive associations with phosphorus concentration and specific leaf area. The mean annual temperature and precipitation, and their interactions were identified as significant moderators of the effects of soil fauna on litter decomposition. We evidenced that the contribution of soil fauna to litter decomposability is expected to be crucial under climate change, and that trait trade-off strategies should be considered in modulating litter decomposition by soil fauna.
Copyright 2002 - 2023 Wuhan Botanical Garden,Chinese Academy Of
Sciences
Email: wbgoffice@wbgcas.cn ICP: 05004779-1